[NÂNG CAO] RAG: AI Đọc Docs Của Bạn
⚠️ CẢNH BÁO: BÀI NÂNG CAO
Ai nên đọc:
- Dùng ChatGPT Enterprise/Team
- Dùng Notion AI / Perplexity Pro
- Company có knowledge base lớn (docs, reports, policies…)
Ai có thể SKIP:
- Chỉ dùng ChatGPT free/Plus cơ bản
- Không có docs nội bộ để AI đọc
- Chỉ cần viết content general
Nếu bạn KHÔNG có knowledge base nội bộ → SKIP bài này!
📌 TLDR
RAG (Retrieval-Augmented Generation) = AI tìm thông tin từ docs/PDFs/database CỦA BẠN trước khi trả lời. Khác normal AI (chỉ dựa vào training data), RAG cho phép AI “đọc” company docs, reports, policies… rồi mới answer.
Vấn Đề: AI Không Biết Data Riêng Của Bạn
Scenario:
Bạn hỏi ChatGPT:
"Summarize Q3 marketing performance của công ty"
ChatGPT trả lời:
“Tôi không có access vào data nội bộ công ty bạn…”
Tại sao? → ChatGPT chỉ biết public internet data! → Không biết reports/docs/emails riêng của bạn!
Solution: RAG
Với RAG:
- Upload Q3 report.pdf vào system
- Hỏi: “Summarize Q3 performance”
- AI TÌM info trong PDF → Trả lời based on YOUR data!
RAG Là Gì? (Simple Explanation)
2 Steps:
Step 1: RETRIEVAL (Tìm)
- AI search trong knowledge base của bạn
- Tìm fragments liên quan đến câu hỏi
Step 2: GENERATION (Tạo)
- Dùng fragments đó để viết answer
- Cite sources (nếu có)
Ví Dụ Đơn Giản:
Knowledge Base:
- Company policies.pdf
- Employee handbook.pdf
- Benefits guide.pdf
Question: “Chính sách nghỉ phép là gì?”
RAG Process:
1. RETRIEVAL:
AI tìm trong 3 PDFs
→ Tìm thấy section "Leave Policy" trong handbook.pdf
2. GENERATION:
"According to employee handbook page 15:
- Annual leave: 12 days/year
- Sick leave: 10 days/year
- After 2 years: +2 days annual leave"
✅ Accurate (based on real docs)
✅ Cited (page 15 handbook)
✅ Grounded (không hallucinate!)
Khi Nào CẦN RAG?
✅ Cần RAG Khi:
1. Company Knowledge Base:
- Policies, guidelines, SOPs
- Product docs, specifications
- Meeting notes, reports
- Customer data, tickets
2. Research/Legal/Finance:
- Cite nguồn bắt buộc
- Accuracy critical
- Compliance requirements
3. Customer Support:
- FAQs, support docs
- Product manuals
- Troubleshooting guides
❌ KHÔNG Cần RAG Khi:
1. General Content:
"Viết blog về trends" → Normal AI đủ
"Brainstorm ideas" → Zero-shot đủ
2. No Internal Docs:
Startup mới, chưa có docs
→ RAG = overkill!
3. Public Information:
AI already knows public info
→ Không cần RAG
Tools Có RAG (No-Code)
1. ChatGPT (Paid Plans)
ChatGPT Plus ($20/mo):
- Upload files per conversation
- Max 10 files
ChatGPT Team/Enterprise:
- Upload company docs
- Search across all conversations
- Better security
How to use:
1. Click 📎 (attach)
2. Upload PDF/docx
3. Ask questions
2. Notion AI
Built-in RAG:
- Searches your Notion workspace
- Pages, databases, notes
Example:
@NotionAI "Summarize all meeting notes from Q4"
→ AI searches workspace
→ Finds all meeting notes
→ Summarizes
3. Perplexity Pro
Web + Your Files:
- Upload PDFs
- AI searches web + your docs
- Cites sources
Use case:
Research combining:
- Your company data +
- Public market data
4. Claude (Anthropic)
Projects Feature:
- Upload docs to project
- AI remembers context
- 200K+ token context window
Best for: Long documents (100+ pages)
RAG Workflow Example
Case: Customer Support Bot
Setup:
Knowledge Base:
├── product_manual.pdf (150 pages)
├── faq.pdf (20 pages)
├── troubleshooting.pdf(50 pages)
└── warranty_policy.pdf (10 pages)
Customer asks:
“Máy không bật được, làm sao?”
RAG Process:
1. RETRIEVAL:
Search 4 PDFs for "không bật"
Found in troubleshooting.pdf page 12:
"Vấn đề: Máy không bật
Giải pháp:
1. Check nguồn điện
2. Giữ nút nguồn 10s
3. Nếu vẫn không được → Contact support"
2. GENERATION:
AI: "Dựa vào troubleshooting guide:
Bước 1: Kiểm tra nguồn điện đã cắm chưa
Bước 2: Giữ nút nguồn 10 giây
Bước 3: Nếu vẫn không được, liên hệ:
hotline 1900-xxxx
(Source: Troubleshooting guide p.12)"
✅ Accurate (from real docs)
✅ Step-by-step (clear)
✅ Cited source (trustworthy)
Prompting với RAG
Template 1: Simple Query
[Upload docs first]
"Based on [specific doc/section],
answer: [question]"
Example:
"Based on Q3 report,
what was our top-performing channel?"
Template 2: Multi-Doc Analysis
"Search across all uploaded documents for:
[topic/keyword]
Summarize findings and cite sources."
Example:
"Search all meeting notes for decisions about
pricing strategy. Summarize and cite which meeting."
Template 3: Comparison
"Compare information between:
- [Doc A]
- [Doc B]
Focus on [aspect]"
Example:
"Compare Q2 vs Q3 revenue metrics.
What changed and why?"
Best Practices
✅ DO:
1. Organize Docs Well:
Clear naming:
✅ Q3_Marketing_Report_2025.pdf
❌ report_final_final_v2.pdf
2. Ask Specific Questions:
✅ "What was organic traffic growth in Q3 per marketing report?"
❌ "Cho tui biết về marketing"
3. Request Citations:
"Answer based on docs and CITE which document + page"
❌ DON’T:
1. Upload Irrelevant Docs:
❌ Upload 50 PDFs về mọi thứ
✅ Upload only relevant docs
2. Vague Questions:
❌ "Nói về công ty"
✅ "Summarize company mission from handbook p.3"
3. Expect Perfect Retrieval:
RAG không phải magic!
Nếu info không có trong docs → AI không biết
RAG Advanced: For Developers
Tech Stack (If Building Custom):
1. Vector Database:
- Pinecone
- Weaviate
- ChromaDB
- Qdrant
2. Frameworks:
- LangChain
- LlamaIndex
- Haystack
3. Embeddings:
- OpenAI text-embedding-3-large
- Sentence Transformers
Process:
1. Chunk documents (500-1000 tokens)
2. Create embeddings (vectors)
3. Store in vector DB
4. Query → Similarity search
5. Retrieve top-K chunks
6. Feed to LLM for generation
⚠️ Warning: Technical setup - Need developer!
Limitations of RAG
❌ Challenges:
1. Quality Depends on Docs:
Bad docs → Bad answers
Outdated docs → Outdated answers
2. Retrieval Not Perfect:
Sometimes AI tìm wrong chunks
→ Irrelevant answers
3. Cost:
RAG = More processing
→ Slower + More expensive than normal AI
4. Security:
Upload sensitive docs → Need secure system
Free tools → Risk!
Real Case Study: Law Firm
Problem:
- 10,000+ legal documents
- Lawyers spend 3h/day searching precedents
Solution: RAG System
Setup:
Knowledge Base:
- All case files (10k docs)
- Legal precedents
- Contract templates
- Research notes
Workflow:
Lawyer asks:
"Find precedents for trademark dispute in e-commerce"
RAG:
1. Search 10k docs
2. Find 15 relevant cases
3. Summarize key points
4. Cite case numbers
Time: 2 minutes (vs 3 hours!)
Results:
- ⏱️ 90% time saved (3h → 20min)
- ✅ Better coverage (AI checks ALL docs)
- 📚 Cited sources (trust!)
ROI: $50K/year saved per lawyer
Combo Techniques
RAG + Chain of Thought:
"Search docs for [topic].
Then think step by step to answer [question]."
RAG + Self-Consistency:
"Find info from docs.
Verify answer using 2 different doc sections.
If conflict, explain difference."
Action Plan (If You Need RAG)
Tuần 1: Setup
- Choose tool (ChatGPT Team / Notion AI / etc)
- Organize 10-20 key docs
- Upload and test
Tuần 2: Test
- Ask 10 questions you know answers
- Verify accuracy
- Note what works/doesn’t
Tuần 3: Scale
- Add more docs
- Train team to use
- Create FAQ templates
Tháng 2+: Optimize
- Clean up docs (remove outdated)
- Refine prompt templates
- Measure time saved
Kết Luận
🎯 RAG Summary
What: AI searches YOUR docs before answering
When to use:
- Company knowledge base
- Need accurate + cited answers
- Customer support
When NOT to use:
- No internal docs
- General content creation
- Budget constrained
⚠️ Final Warning
Bạn có THỰC SỰ cần RAG?
CẦN nếu:
- ✅ Có 100+ docs nội bộ
- ✅ Cần cite sources
- ✅ Accuracy critical
KHÔNG CẦN nếu:
- ❌ Startup nhỏ, ít docs
- ❌ Chỉ viết content
- ❌ Chỉ dùng ChatGPT free
90% người KHÔNG CẦN RAG!
Quay lại practice 6 techniques cơ bản! 💪
Resources:
- ChatGPT Enterprise: openai.com/enterprise
- LangChain docs: langchain.com
- RAG Paper: “Retrieval-Augmented Generation” (Lewis et al., 2020)
Next: If you need self-improving AI → Read about Reflexion
Otherwise: Back to mastering core techniques! ✅